
A probability model for

decentralized parametric insurance

V0.5

Jake Brukhman

jake@coinfund.io

December 15, 2016

Abstract

This is a technical addendum to the Etherisc1 decentralized insurance whitepaper,

presented at the EtherCamp Virtual Accelerator (http://hack.ether.camp). In this work,

we develop a simple probability model for a parametric insurance pool with variable claim

payouts and variable probabilities of insurable events. We present one methodology for

calculating premiums. We also suggest avenues for employing this model in a real-time

context of a portfolio that continuously underwrites claims. Finally, we present a Python

simulation which puts our modeling methodology into practice against actual data for

insurable flight delays.

1 Overview

In this section, we describe the desirable properties of a basic credit risk model for

decentralized insurance with a minimum viable set of features that can enable the proof

of concept Etherisc application. In general, insurance works by selling policies which

cost the purchaser a premium in exchange to an entitlement to a payout in the case of

some insurable event. The occurrence of the event and subsequent automated payout

is referred to as a claim. The Etherisc demo application focuses on the case of flight

delays, but in our model we do not make any assumption about the specific nature of

the event with an eye to expanding our insurance offering to different markets.

1http://etherisc.com

1

An insurance risk pool underwrites policies by taking on some maximum liability in

the form of credit for potential claims, and collateralizing the portfolio with a smaller

amount of capital to cover the capital outflow due to claims with a reasonable confidence

level. If the portfolio experiences a capital outflow of claims which exceeds the collater-

alization of the risk pool, the risk pool becomes insolvent. This problem of excess risk

management is addressed by the Etherisc whitepaper and its decentralized reinsurance

market based on cryptographic tokens.

We target the following mathematical properties in our model of an insurance risk

pool:

1. The portfolio should be able to reasonably model insurable events as independent

(and uncorrelated) random variables.

2. The model should be able to provide distinct probabilities of each individual event

as parameters.

3. The portfolio should be able to underwrite policies for an arbitrary payout amount.

4. The model should be able to parametrize the probability of solvency of the portfolio

at an arbitrarily high confidence level.

In modeling insurance, correlation analysis of events plays a key role in achieving

highly realistic models but significantly increases model complexity. For the purposes of

our proof of concept product, we assume independence of insurable events and offload

the risk due to error to our reinsurance market (covered in the Etherisc whitepaper). We

recognize the importance of correlation analysis and future efforts will focus on develop-

ing more granular modeling methodologies. Note that this model’s ability to underwrite

payouts of arbitrary size is crucial because it enables the risk pool underwrite multiple

policies pertaining to the same event without requiring a model based on correlated

random variables.

In general, we also desire that our model outputs should cover the gamut of relevant

financials that might be useful in constructing a smart contract2 which manages the

insurance pool: (i) the total liability of the credit portfolio; (ii) the required collateral-

ization of the risk portfolio; (iii) at least one plausible method for calculating premiums

commensurate with event probabilities and payouts; and (iv) an expectation and spread

for the revenue of the portfolio (ideally, non-negative).

Finally, our model should be straightforward to calculate (or estimate). In the follow-

ing section, we develop the mathematics for a model which conforms to the properties

above.

2Decentralized insurance rests on the idea of a decentralized implementation on a smart contract platform
such as Ethereum. See: http://ethereum.org.

2

2 Probability model

Let us assume that our risk pool portfolio contains n policies which are insuring against

n insurable events, modeled as independent but not necessarily identically distributed

random variables Xi (i = 1, . . . , n). Suppose that P ∗i (i = 1, . . . , n) is a fixed set

of desired payouts where P ∗i corresponds to the policy i. Furthermore, suppose that

Xi ∈ {0, 1} are Bernoulli random variables with event probability pi (i = 1, . . . , n).

That is, P (Xi = 1) = 1− P (Xi = 0) = pi for i = 1, . . . , n.

The total liability L of the portfolio is the sum of all payouts the portfolio is under-

writing, and we define

L(n) :=
n∑

i=1

P ∗i .

We are interested to find the required collateral C(n), that is, the amount of capital the

portfolio will hold to handle capital outflows due to claims. Typically, C(n)/L(n) < 1,

reflecting the fact that the portfolio is taking on credit risk. Our goal is to keep enough

collateral in the portfolio to be able to pay a reasonably expected number of policy

claims. We define the total capital outflow due to claims as

X :=
n∑

i=1

XiP
∗
i .

X is a random variable that has a non-trivial distribution which is the weighted sum

of Bernoulli variables with non-uniform probabilities. Let us define π to be the desired

confidence level (probability) of portfolio solvency, and we note that typically π will be

high (π ≈ 1). Let FX be the cumulative distribution function of X. Our model is then

defined by setting the required collateral C to the π-percentile probable capital outflow

due to claims:

C(n) = F−1X (π). (1)

Let us now to turn to calculating the set of premiums Pi (i = 1, . . . , n). For one, we must

have that
∑n

i=1 Pi = C(n) = F−1X (π), but we are free to choose how to distribute the

claim costs among policies. While there are multiple ways to distribute the collateraliza-

tion cost, we choose a method that has naturally desirable properties: (i) the premium

Pi should be proportional to the payout P ∗i (intuitively, the higher the payout of a pol-

icy, the more the upfront premium cost); (ii) the premium Pi should be proportional to

the insurable event probability pi (intuitively, the lower the probability of the event, the

cheaper the premium). To achieve this relationship, set

Pi :=
piP

∗
i∑

j pjP
∗
j

F−1X (π)

3

and it is clear that (1) holds. Moreover, it is easy to check that Pi → 0 as π → 0 and

Pi → ∞ as P ∗i → ∞ as required. If we find that at a small n our premiums are too

expensive, we have the option of reducing premiums with some initial subsidy capital

seeded into the risk pool; however, we will not pursue the mathematical details of this

extension as we believe premiums will already be sufficiently small.

A straightforward calculation shows that the expected value and standard deviation

of X are given by

E(X) =
n∑

i=1

piP
∗
i ; σX =

√√√√ n∑
i=1

pi(1− pi)(P ∗i)2.

Figure 1: Probability distributions of revenue margins given different values of average event
probability p. M is the revenue margin, the difference between capital outflows due to claims
and the collateral C, divided by C.

We now demonstrate that, given collateralization, our model produces a non-zero

expectation of revenue with π-confidence. To show this, let us define the revenue R as

4

the excess capital remaining in the pool after capital outflows due to claims

R(n) := C(n)−X(n)

and note that R(n) > 0 with probability π. (Observe that E(R) = E(C) − E(X) =

F−1X (π)−F−1X (.50) and because of our self imposed constraint that π ≈ 1 > .50 we have

E(C) > E(X).) More explicitly, note that the mean and standard deviation of revenue

under this model is given by:

E(R) = F−1X −
∑
i

piP
∗
i ; σR =

√
var(C) + var(X) = σX .

We now summarize the inputs and outputs of the Etherisc credit risk model.

2.1 Model inputs

1. A vector of insurable event probabilities p = 〈pi〉, (i = 1, . . . , n).

2. A vector of desired payouts P∗ = 〈P ∗i 〉, (i = 1, . . . , n).

3. A confidence level for portfolio solvency π, where .5 < π < 1.

2.2 Model outputs

1. Total Liability. Total portfolio liability is given by

L(n) :=
∑
i

P ∗i

.

2. Collateral. Required minimal collateral is given by

C(n) := F−1X

.

3. Excess Liability. The excess portfolio liability on offer to a reinsurance market

is

L̃(n) := L(n)− C(n)

.

4. Premiums. A vector of premiums corresponding to the payouts P∗, given by

P :=

〈
piP

∗
i∑

j pjP
∗
j

F−1X (π)

〉
.

5

5. Capital Outflow. The expected capital outflow due to claims is E(X) =
∑

i piP
∗
i .

The standard deviation of capital outflow due to claims is

σX =

√√√√ n∑
i=1

pi(1− pi)(P ∗i)2

.

6. Expected Revenue. The expected revenue for the portfolio is E(R) = C(n) −∑n
i=1 piP

∗
i . The standard deviation of revenue is

σR = σX =

√√√√ n∑
i=1

pi(1− pi)(P ∗i)2

.

2.3 Properties

We now summarize the general mathematical properties of the credit risk model we have

described.

1. The total liability of the risk portfolio increases with the number n of policies, but

the required collateralization (that is, C(n)/L(n)) tends to decrease with n.

2. Premiums become less expensive as the number of policies grows; that is, Pi → 0 as

n→∞. Premiums are also proportional to the corresponding payout and insurable

event probability under the premium calculation we have described.

3. In general, the premiums can be calculated using any algorithm that distributes

the required collateral C among n policy holders. A reasonable framework for this

calculation is that

Pi = kpiP
∗
i

should hold for the i-th policy for some constant k > 0.

4. Expected revenue is inversely proportional to the insurable event probabilities and

standard deviation of revenue decreases as probabilities decrease. Unsurprisingly,

the variance in revenue is the variance of capital outflows due to claims.

5. As demonstrated in Figure 1, revenue margins decrease with higher efficiency of

the system (higher n) and lower average event probability p.

3 Discussion of practical applications

In practice, an insurance risk pool operates continuously: it has some number of valid

policies currently being underwritten and creating liability as well as incoming requests

6

for new policies to be underwritten. In a practical context, the pricing of premiums

is directly related to marginal changes of the required collateralization C of the risk

portfolio.

For instance, suppose the current state of the portfolio requires collateral C, but a

new policy is requested against a new or existing event. Recalculation of the model will

result in a new required collateralization C ′ which must be maintained for π-confidence

of solvency (and as the portfolio is taking on more risk, C ′ > C). Since the standing

premiums in the portfolio have already been remitted, their values cannot be changed.

Thus the fair price of a new premium is ∆C := C ′ − C, guaranteeing that π-confidence

is maintained.

In general, the price of a premium should correlate positively with both the payout

and the probability of the insurable event: that is, Pi = kpiP
∗
i for some constant k > 0.

In practice, ∆C may exceed this ”expected” baseline premium, especially when the

portfolio is small, and so subsidization of the risk pool may be required to bring premiums

to expected levels. This scenario is covered in the Etherisc whitepaper through revenue

reallocation.

4 Model estimation

4.1 Calculation

The core complexity of the model estimation algorithm is the non-triviality of the dis-

tribution of random variable X. In order to find C, we must estimate F−1X (π) which

is computationally difficult to do directly. Instead, we take an estimation approach by

taking some large N , and simulating N random outcomes for the value of X, followed

by running a known percentile estimation algorithm on the random outcome for the

π-percentile. The rest of the model outputs follow by straightforward calculation based

on Section 2.2 above.

4.2 Python simulation

The model described above is implemented as a Python simulation. Please see:

https://github.com/etherisc/hackathon/tree/master/etherisc-simulator

4.3 Example outputs

The following simulation demonstrates a calculation of the insurance model on a set of

60 real flights given actual flight delay estimates from FlightStats. In this calculation,

we have set a fixed payout of $250 for each policy. The model has determined the total

7

liability L of the portfolio to be $15,000 and a required collateralization C = $3, 750,

a 25% collateralization of the portfolio. The expected revenue R = $2, 337.37 with a

standard deviation of $561.27.

As discussed, note that the theoretical premiums displayed below are different from

what would be provided to customers. In general, the premiums can be adjusted lower

or higher using subsidization of the risk pool. In practice, premiums will also include

additional fixed service fees.

Etherisc insurance calculation

n: 60

mu: 1412.63

sd: 561.27

L: $15000.00

C: $3750.00

%: 25.00

r: 4.00

R: $2337.37

prob premium payout

DL_762_ATL_MDW 0.018182 12.066488 250

WN_349_RIC_ATL 0.022727 15.083110 250

WN_349_ATL_CMH 0.022727 15.083110 250

WN_203_BNA_SAT 0.026316 17.464685 250

DL_780_ATL_CVG 0.040000 26.546313 250

DL_762_MDW_ATL 0.040000 26.546313 250

KL_724_HAV_AMS 0.040816 27.088050 250

DL_132_TPA_DTW 0.046512 30.867805 250

SK_904_EWR_ARN 0.048387 32.112468 250

DL_160_MSP_AMS 0.048387 32.112468 250

DL_132_DTW_AMS 0.052632 34.929329 250

WN_203_MDW_BNA 0.052632 34.929329 250

AC_36_BNE_YVR 0.053571 35.553061 250

KL_642_JFK_AMS 0.064516 42.816613 250

DL_160_IND_MSP 0.064516 42.816613 250

DL_1527_ATL_FLL 0.065574 43.518511 250

DL_476_JFK_BCN 0.066667 44.243829 250

WN_349_CMH_MCO 0.068182 45.249369 250

AA_1033_DFW_RSW 0.073171 48.560297 250

8

DL_2452_ATL_RIC 0.075472 50.087360 250

WN_203_ABQ_BWI 0.081081 53.810073 250

DL_337_ATL_NAS 0.083333 55.304776 250

DL_1527_FLL_ATL 0.084746 56.242159 250

DL_142_LAS_SEA 0.093023 61.735571 250

AA_66_SFO_JFK 0.096774 64.224937 250

SK_903_ARN_EWR 0.096774 64.224937 250

LA_3010_BOG_MDE 0.098361 65.277789 250

DL_2452_RIC_ATL 0.098361 65.277789 250

DL_72_MCO_ATL 0.098361 65.277789 250

YV_6273_IAH_ELP 0.100000 66.365763 250

DL_54_ATL_LOS 0.100000 66.365763 250

EV_5230_ATL_BTR 0.111111 73.739715 250

F9_1539_ATL_PHX 0.111111 73.739715 250

WN_258_GSP_ATL 0.111111 73.739715 250

WN_258_PHL_TPA 0.111111 73.739715 250

LA_800_AKL_SCL 0.112903 74.929082 250

DL_72_ATL_AMS 0.112903 74.929082 250

NZ_29_IAH_AKL 0.113636 75.415629 250

EV_5597_LFT_ATL 0.114754 76.157406 250

EV_5597_ATL_LFT 0.114754 76.157406 250

KL_624_ATL_AMS 0.117647 78.077347 250

EV_5230_ATL_FAY 0.117647 78.077347 250

EV_5230_FAY_ATL 0.117647 78.077347 250

KL_678_YYC_AMS 0.118644 78.739020 250

OO_4568_SLC_PHX 0.120000 79.638900 250

DL_907_DTW_RDU 0.120000 79.638900 250

DL_54_IAD_ATL 0.128205 85.084289 250

LA_800_SYD_AKL 0.129032 85.633220 250

AA_83_JFK_LAX 0.129032 85.633220 250

KL_652_IAD_AMS 0.129032 85.633220 250

KL_606_SFO_AMS 0.129032 85.633220 250

QR_755_DOH_ATL 0.131148 87.037061 250

WN_203_BWI_MDW 0.131579 87.323337 250

DL_477_BCN_JFK 0.133333 88.487664 250

HA_444_BNE_HNL 0.137931 91.538975 250

DL_476_LAX_JFK 0.142857 94.808205 250

DL_675_NAS_ATL 0.145161 96.337365 250

LA_3508_BOG_CUN 0.145161 96.337365 250

9

JJ_8000_GRU_BOG 0.145161 96.337365 250

NZ_10_AKL_HNL 0.147059 97.596702 250

Figure 2: Example calculation on a 60-policy insurance portfolio using actual flight delay data.

10

